Rewriting Matlab eig(A,B) (Generalized eigenvalues/eigenvectors) to C/C++ -


do have idea how can rewrite eig(a,b) matlab used calculate generalized eigenvector/eigenvalues? i've been struggling problem lately. far:

matlab definition of eig function need:

[v,d] = eig(a,b) produces diagonal matrix d of generalized eigenvalues , full matrix v columns corresponding eigenvectors a*v = b*v*d. 
  1. so far tried eigen library (http://eigen.tuxfamily.org/dox/classeigen_1_1generalizedselfadjointeigensolver.html)

my implementation looks this:

std::pair<matrix4cd, vector4d> eig(const matrix4cd& a, const matrix4cd& b) {     eigen::generalizedselfadjointeigensolver<matrix4cd> solver(a, b);      matrix4cd v = solver.eigenvectors();     vector4d d = solver.eigenvalues();      return std::make_pair(v, d); } 

but first thing comes mind is, can't use vector4cd .eigenvalues() doesn't return complex values matlab does. furthermore results of .eigenvectors() , .eigenvalues() same matrices not same @ all:

c++:

matrix4cd x; matrix4cd y; pair<matrix4cd, vector4d> result;  (int = 0; < 4; i++) {     (int j = 0; j < 4; j++)     {         x.real()(i,j) = (double)(i+j+1+i*3);         y.real()(i,j) = (double)(17 - (i+j+1+i*3));          x.imag()(i,j) = (double)(i+j+1+i*3);         y.imag()(i,j) = (double)(17 - (i+j+1+i*3));     } } result = eig(x,y); cout << result.first << endl << endl; cout << result.second << endl << endl; 

matlab:

for i=1:1:4     j=1:1:4         x(i,j) = complex((i-1)+(j-1)+1+((i-1)*3), (i-1)+(j-1)+1+((i-1)*3));         y(i,j) = complex(17 - ((i-1)+(j-1)+1+((i-1)*3)), 17 - ((i-1)+(j-1)+1+((i-1)*3)));     end end  [a,b] = eig(x,y) 

so give eig same 4x4 matrices holding values 1-16 ascending (x) , descending (y). receive different results, furthermore eigen method returns double eigenvalues while matlab returns complex dobule. find out there other eigen solver named generalizedeigensolver. 1 in documentation (http://eigen.tuxfamily.org/dox/classeigen_1_1generalizedeigensolver.html) has written solves a*v = b*v*d honest tried , results (matrix sizes) not same size matlab got quite lost how works (examplary results on website i've linked). has .eigenvector method.

c++ results:

(-0.222268,-0.0108754) (0.0803437,-0.0254809) (0.0383264,-0.0233819) (0.0995482,0.00682079) (-0.009275,-0.0182668) (-0.0395551,-0.0582127) (0.0550395,0.03434) (-0.034419,-0.0287563) (-0.112716,-0.0621061) (-0.010788,0.10297) (-0.0820552,0.0294896) (-0.114596,-0.146384) (0.28873,0.257988) (0.0166259,-0.0529934) (0.0351645,-0.0322988) (0.405394,0.424698)  -1.66983 -0.0733194 0.0386832 3.97933 

matlab results:

[a,b] = eig(x,y)   =    columns 1 through 3    -0.9100 + 0.0900i  -0.5506 + 0.4494i   0.3614 + 0.3531i    0.7123 + 0.0734i   0.4928 - 0.2586i  -0.5663 - 0.4337i    0.0899 - 0.4170i  -0.1210 - 0.3087i   0.0484 - 0.1918i    0.1077 + 0.2535i   0.1787 + 0.1179i   0.1565 + 0.2724i    column 4    -0.3237 - 0.3868i    0.2338 + 0.7662i    0.5036 - 0.3720i   -0.4136 - 0.0074i   b =    columns 1 through 3    -1.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i    0.0000 + 0.0000i  -1.0000 - 0.0000i   0.0000 + 0.0000i    0.0000 + 0.0000i   0.0000 + 0.0000i  -4.5745 - 1.8929i    0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i    column 4     0.0000 + 0.0000i    0.0000 + 0.0000i    0.0000 + 0.0000i   -0.3317 + 1.1948i 
  1. second try intel ipp seems solves a*v = v*d , support told me it's not supported anymore.

https://software.intel.com/en-us/node/505270 (list of constructors intel ipp)

  1. i got suggestion move intel ipp mkl. did , hit wall again. tried check algorithms eigen seems there a*v = v*d problems solved. checking lapack95.lib. list of algorithms used library available there: https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/index.htm#dsyev.htm

somewhere on web find topic on mathworks when said managed solve problem partially usage of mkl:

http://jp.mathworks.com/matlabcentral/answers/40050-generalized-eigenvalue-and-eigenvectors-differences-between-matlab-eig-a-b-and-mkl-lapack-dsygv

person said he/she used dsygv algorithm can't locate on web. maybe it's typo.

anyone has other proposition/idea how can implement it? or maybe point mistake. i'd appreciate that.


edit: in comments i've received hint using eigen solver wrong. a matrix wasn't self-adjoint , b matrix wasn't positive-definite. took matrices program want rewrite c++ (from random iteration) , checked if meet requirements. did:

rj =    1.0e+02 *   columns 1 through 3     0.1302 + 0.0000i  -0.0153 + 0.0724i   0.0011 - 0.0042i   -0.0153 - 0.0724i   1.2041 + 0.0000i  -0.0524 + 0.0377i    0.0011 + 0.0042i  -0.0524 - 0.0377i   0.0477 + 0.0000i   -0.0080 - 0.0108i   0.0929 - 0.0115i  -0.0055 + 0.0021i    column 4    -0.0080 + 0.0108i    0.0929 + 0.0115i   -0.0055 - 0.0021i    0.0317 + 0.0000i  rt =    columns 1 through 3     4.8156 + 0.0000i  -0.3397 + 1.3502i  -0.2143 - 0.3593i   -0.3397 - 1.3502i   7.3635 + 0.0000i  -0.5539 - 0.5176i   -0.2143 + 0.3593i  -0.5539 + 0.5176i   1.7801 + 0.0000i    0.5241 + 0.9105i   0.9514 + 0.6572i  -0.7302 + 0.3161i    column 4     0.5241 - 0.9105i    0.9514 - 0.6572i   -0.7302 - 0.3161i    9.6022 + 0.0000i 

as rj a - self-adjoint because rj = rj' , rj = ctranspose(rj). (http://mathworld.wolfram.com/self-adjointmatrix.html)

as rt b - positive-definite checked method linked me. (http://www.mathworks.com/matlabcentral/answers/101132-how-do-i-determine-if-a-matrix-is-positive-definite-using-matlab).

>> [~,p] = chol(rt)  p =       0 

i've rewritten matrices manually c++ , performed eig(a,b) again matrices meeting requirements:

matrix4cd x; matrix4cd y; pair<matrix4cd, vector4d> result;  x.real()(0,0) = 13.0163601949795; x.real()(0,1) = -1.53172561296005; x.real()(0,2) = 0.109594869350436; x.real()(0,3) = -0.804231869422614;  x.real()(1,0) = -1.53172561296005; x.real()(1,1) = 120.406645675346; x.real()(1,2) = -5.23758765476463; x.real()(1,3) = 9.28686785230169;  x.real()(2,0) = 0.109594869350436;  x.real()(2,1) = -5.23758765476463; x.real()(2,2) = 4.76648319080400; x.real()(2,3) = -0.552823839520508;  x.real()(3,0) = -0.804231869422614; x.real()(3,1) = 9.28686785230169; x.real()(3,2) = -0.552823839520508; x.real()(3,3) = 3.16510496622613;  x.imag()(0,0) = -0.00000000000000; x.imag()(0,1) = 7.23946944213164; x.imag()(0,2) = 0.419181335323979; x.imag()(0,3) = 1.08441894337449;  x.imag()(1,0) = -7.23946944213164; x.imag()(1,1) = -0.00000000000000; x.imag()(1,2) = 3.76849276970080; x.imag()(1,3) = 1.14635625342266;  x.imag()(2,0) = 0.419181335323979; x.imag()(2,1) = -3.76849276970080; x.imag()(2,2) = -0.00000000000000; x.imag()(2,3) = 0.205129702522089;  x.imag()(3,0) = -1.08441894337449; x.imag()(3,1) = -1.14635625342266; x.imag()(3,2) = 0.205129702522089; x.imag()(3,3) = -0.00000000000000;  y.real()(0,0) = 4.81562784930907; y.real()(0,1) = -0.339731222392148; y.real()(0,2) = -0.214319720979258; y.real()(0,3) = 0.524107127885349;  y.real()(1,0) = -0.339731222392148; y.real()(1,1) = 7.36354235698375; y.real()(1,2) = -0.553927983436786; y.real()(1,3) = 0.951404408649307;  y.real()(2,0) = -0.214319720979258; y.real()(2,1) = -0.553927983436786; y.real()(2,2) = 1.78008768533745; y.real()(2,3) = -0.730246631850385;  y.real()(3,0) = 0.524107127885349; y.real()(3,1) = 0.951404408649307; y.real()(3,2) = -0.730246631850385; y.real()(3,3) = 9.60215057284395;  y.imag()(0,0) = -0.00000000000000; y.imag()(0,1) = 1.35016928394966; y.imag()(0,2) = -0.359262708214312; y.imag()(0,3) = -0.910512495060186;  y.imag()(1,0) = -1.35016928394966; y.imag()(1,1) = -0.00000000000000; y.imag()(1,2) = -0.517616473138836; y.imag()(1,3) = -0.657235460367660;  y.imag()(2,0) = 0.359262708214312; y.imag()(2,1) = 0.517616473138836; y.imag()(2,2) = -0.00000000000000; y.imag()(2,3) = -0.316090662865005;  y.imag()(3,0) = 0.910512495060186; y.imag()(3,1) = 0.657235460367660; y.imag()(3,2) = 0.316090662865005; y.imag()(3,3) = -0.00000000000000;  result = eig(x,y);  cout << result.first << endl << endl; cout << result.second << endl << endl; 

and results of c++:

(0.0295948,0.00562174) (-0.253532,0.0138373) (-0.395087,-0.0139696) (-0.0918132,-0.0788735) (-0.00994614,-0.0213973) (-0.0118322,-0.0445976) (0.00993512,0.0127006) (0.0590018,-0.387949) (0.0139485,-0.00832193) (0.363694,-0.446652) (-0.319168,0.376483) (-0.234447,-0.0859585) (0.173697,0.268015) (0.0279387,-0.0103741) (0.0273701,0.0937148)  (-0.055169,0.0295393)  0.244233 2.24309 3.24152 18.664 

results of matlab:

>>  [a,b] = eig(rj,rt)  =    columns 1 through 3     0.0208 - 0.0218i   0.2425 + 0.0753i  -0.1242 + 0.3753i   -0.0234 - 0.0033i  -0.0044 + 0.0459i   0.0150 - 0.0060i    0.0006 - 0.0162i  -0.4964 + 0.2921i   0.2719 + 0.4119i    0.3194 + 0.0000i  -0.0298 + 0.0000i   0.0976 + 0.0000i    column 4    -0.0437 - 0.1129i    0.2351 - 0.3142i   -0.1661 - 0.1864i   -0.0626 + 0.0000i  b =     0.2442         0         0         0         0    2.2431         0         0         0         0    3.2415         0         0         0         0   18.6640 

eigenvalues same! nice, why eigenvectors not similar @ all?

there no problem here eigen.

in fact second example run, matlab , eigen produced same result. please remember basic linear algebra eigenvector determined arbitrary scaling factor. (i.e. if v eigenvector same holds alpha*v, alpha non 0 complex scalar.)

it quite common different linear algebra libraries compute different eigenvectors, not mean 1 of 2 codes wrong: means choose different scaling of eigenvectors.

edit

the main problem replicating scaling chosen matlab eig(a,b) driver routine, depending different properties of a , b may call different libraries/routines, , apply steps balancing matrices , on. inspecting example, in case matlab enforcing following condition:

  • all(imag(v(end,:))==0) (the last component of each eigenvector real)

but not imposing other constraints. unfortunately means scaling not unique, , depends on intermediate results of generalised eigenvector algorithm used. in case i'm not able give advice on how exactly replicate matlab: knowledge of internal working of matlab required.

as general remark, in linear algebra 1 not care eigenvector scaling, since irrelevant problem solved, when eigenvectors used intermediate results.

the case in scaling has defined exactly, when going give graphic representation of eigenvalues.


Comments

Popular posts from this blog

apache - PHP Soap issue while content length is larger -

asynchronous - Python asyncio task got bad yield -

javascript - Complete OpenIDConnect auth when requesting via Ajax -